Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nutrients ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364810

RESUMO

Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood-brain barrier that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabilize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC). This small structure modification allows the maintaining of the preferential brain uptake of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against neurological diseases.


Assuntos
Encefalopatias , Ácidos Docosa-Hexaenoicos , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Esterificação , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Fosfolipídeos/metabolismo , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo
2.
Biochimie ; 203: 106-117, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35041857

RESUMO

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Assuntos
Diglicerídeos , Enterócitos , Ratos , Animais , Diglicerídeos/metabolismo , Enterócitos/metabolismo , Lipase/metabolismo , Óleo de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicerídeos/metabolismo , Digestão , Redes e Vias Metabólicas
3.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233525

RESUMO

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/biossíntese , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neurônios/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/isolamento & purificação , Bitionol/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Cromatografia Líquida , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/isolamento & purificação , Etanolaminas/antagonistas & inibidores , Etanolaminas/isolamento & purificação , Hexaclorofeno/farmacologia , Cinética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Plasmalogênios/antagonistas & inibidores , Plasmalogênios/biossíntese , Plasmalogênios/isolamento & purificação , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/isolamento & purificação , Espectrometria de Massas em Tandem
4.
Biochimie ; 179: 281-284, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956736

RESUMO

Poxytrins (Pufa Oxygenated Trienes) are dihydroxy derivatives from polyunsaturated fatty acids (PUFA) with adjacent hydroxyl groups to a conjugated triene having the specific E,Z,E geometry. They are made by the double action of one lipoxygenase or the combined actions of two lipoxygenases, followed by reduction of the resulting hydroperoxides with glutathione peroxidase. Because of their E,Z,E conjugated triene, poxytrins may inhibit inflammation associated with cyclooxygenase (COX) activities, and reactive oxygen species (ROS) formation. In addition of inhibiting COX activities, at least one poxytrin, namely protectin DX (PDX) from docosahexaenoic acid (DHA), has also been reported as able to inhibit influenza virus replication by targeting its RNA metabolism.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Animais , Anti-Inflamatórios/química , Antivirais/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/química , Humanos , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos
5.
Biochimie ; 170: 203-211, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32014503

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is the main omega-3 polyunsaturated fatty acid in brain tissues necessary for common brain growth and function. DHA can be provided to the body through two origins: an exogenous origin, from direct dietary intakes and an endogenous one, from the bioconversion of the essential α-linolenic acid (ALA, 18:3n-3) in the liver. In humans, the biosynthesis of DHA from its precursor ALA is very low. A reduction in the cerebral amount of DHA is detected in patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Considering the vital functions of DHA for the brain, new methodologies to target the brain with DHA offers encouraging perceptions in the improvement of precautionary and therapeutic approaches for neurodegenerative diseases. The aim of the present review was to provide better understanding of the cerebral uptake of DHA in different form including free fatty acids, Lysophosphatidylcholines LysoPC-DHA as well as structured phospholipids. First, we explored the special structure of the blood-brain barrier BBB, BBB being a physical and metabolic barrier with restrictive properties. Then, we discussed the incorporation of DHA into the membrane phospholipids of the brain, the neuroprotective and therapeutic effect of DHA for neurological diseases.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Animais , Transporte Biológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Humanos , Doenças Neurodegenerativas/patologia
6.
Nutrients ; 12(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963708

RESUMO

AceDoPC® is a structured glycerophospholipid that targets the brain with docosahexaenoic acid (DHA) and is neuroprotective in the experimental ischemic stroke. AceDoPC® is a stabilized form of the physiological 2-DHA-LysoPC with an acetyl group at the sn1 position; preventing the migration of DHA from the sn2 to sn1 position. In this study we aimed to know the bioavailability of 13C-labeled DHA after oral intake of a single dose of 13C-AceDoPC®, in comparison with 13C-DHA in triglycerides (TAG), using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to assess the 13C enrichment of DHA-containing lipids. 13C-DHA enrichment in plasma phospholipids was significantly higher after intake of AceDoPC® compared with TAG-DHA, peaking after 24 h in both cases. In red cells, 13C-DHA enrichment in choline phospholipids was comparable from both sources of DHA, with a maximum after 72 h, whereas the 13C-DHA enrichment in ethanolamine phospholipids was higher from AceDoPC® compared to TAG-DHA, and continued to increase after 144 h. Overall, our study indicates that DHA from AceDoPC® is more efficient than from TAG-DHA for a sustained accumulation in red cell ethanolamine phospholipids, which has been associated with increased brain accretion.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Eritrócitos/metabolismo , Fosfatidilcolinas/sangue , Triglicerídeos/sangue , Administração Oral , Idoso , Disponibilidade Biológica , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos/administração & dosagem , Método Duplo-Cego , França , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/administração & dosagem , Fatores de Tempo , Triglicerídeos/administração & dosagem
8.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480215

RESUMO

The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-30773208

RESUMO

The brain requires a constant supply of docosahexaenoic acid (DHA) from blood to maintain DHA levels within the brain. Several plasma pools have been proposed to supply the brain with DHA, including plasma lipoproteins, lysophosphatidylcholine and unesterified fatty acids. Here we briefly review the evidence for each plasma pool supplying the brain highlighting controversies and remaining questions. We conclude that circulating lysophosphatidylcholine has a higher brain/body partition coefficient than unesterified DHA while unesterified DHA entry into the brain is more rapid.


Assuntos
Barreira Hematoencefálica/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Graxos não Esterificados/sangue , Lisofosfatidilcolinas/sangue , Animais , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Meia-Vida , Humanos , Isomerismo , Camundongos , Fosfatidilcolinas/sangue , Ratos
10.
Mol Neurobiol ; 56(2): 986-999, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29858775

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Hipóxia , Neurogênese/efeitos dos fármacos , Animais , Encéfalo/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Hipóxia/patologia , Lisofosfatidilcolinas/farmacologia , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/patologia , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/patologia
11.
Biochimie ; 159: 55-58, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30179647

RESUMO

The double lipoxygenation of polyunsaturated fatty acids (PUFA) is possible with PUFA having at least three methylene-interrupted double bonds. Several PUFA of the omega-3/n-3 and -6 families may be converted through this route, and the products show interesting inhibitory effects on blood platelet function and cyclooxygenase activities. This review focuses on two main omega-3 PUFA of nutritional interest, namely docosahexaenoic acid (DHA/22:6n-3) and alpha linolenic acid (ALA/18:3n-3). The chemical configuration of the double lipoxygenase end-product from DHA (protectin DX) is compared with that of protectin D1 which is produced through a mono-lipoxygenation step followed by an epoxidation and epoxide hydrolysis process. The different metabolic pathways are discussed as well as the different biological activities of both protectins.


Assuntos
Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Lipoxigenases/metabolismo , Ácido alfa-Linolênico/metabolismo , Humanos
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 651-656, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29555597

RESUMO

The oxygenation metabolism of arachidonic acid (ArA) has been early described in blood platelets, in particular with its conversion into the potent labile thromboxane A2 that induces platelet aggregation and vascular smooth muscle cells contraction. In addition, the primary prostaglandins D2 and E2 have been mainly reported as inhibitors of platelet function. The platelet 12-lipoxygenase (12-LOX) product, i.e. the hydroperoxide 12-HpETE, appears to stimulate platelet ArA metabolism at the level of its release from membrane phospholipids through phospholipase A2 (cPLA2) and cyclooxygenase (COX-1) activities, the first enzymes in prostanoid production cascade. Also, 12-HpETE may regulate the oxygenation of other polyunsaturated fatty acids (PUFA) by platelets, especially that of eicosapentaenoic acid (EPA). On the other hand, the reduced product of 12-HpETE, 12-HETE, is able to antagonize TxA2 action. This is even more obvious for the 12-LOX end-products from docosahexaenoic acid (DHA), 11- and 14-HDoHE. In addition, 12-HpETE plays a key role in platelet oxidative stress as observed in pathophysiological conditions, but may be regulated by DHA with a bimodal way according to its concentration. Other oxygenated products of PUFA, especially omega-3 PUFA, produced outside platelets may affect platelet functions as well.


Assuntos
Plaquetas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estresse Oxidativo/fisiologia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Plaquetas/citologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ácidos Graxos Insaturados/genética , Humanos , Oxirredução
13.
Lipids ; 53(1): 103-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29469960

RESUMO

Docosahexaenoic acid (DHA), a prominent long-chain fatty acid of the omega-3 family, is present at high amount in brain tissues, especially in membrane phospholipids. This polyunsaturated fatty acid is the precursor of various oxygenated lipid mediators involved in diverse physiological and pathophysiological processes. Characterization of DHA-oxygenated metabolites is therefore crucial for better understanding the biological roles of DHA. In this study, we identified and measured, by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry, a number of oxygenated products derived from DHA in exsanguinated and nonexsanguinated brains. These metabolites were found both in free form and esterified in phospholipids. Interestingly, both (R)- and (S)-monohydroxylated fatty acid stereoisomers were observed free and esterified in phospholipids. Monohydroxylated metabolites were the main derivatives; however, measurable amounts of dihydroxylated products such as protectin DX were detected. Moreover, exsanguination allowed discriminating brain oxygenated metabolites from those generated in blood. These results obtained in healthy rats allowed an overview on the brain oxygenated metabolism of DHA, which deserves further research in pathophysiological conditions, especially in neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfolipídeos/metabolismo , Animais , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/química , Exsanguinação/metabolismo , Exsanguinação/patologia , Ácidos Graxos Insaturados/química , Oxigênio/metabolismo , Fosfolipídeos/síntese química , Fosfolipídeos/química , Ratos , Estereoisomerismo , Espectrometria de Massas em Tandem
14.
Diabetologia ; 61(3): 688-699, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29299636

RESUMO

AIMS/HYPOTHESIS: Oxidative stress is involved in the pathophysiology of insulin resistance and its progression towards type 2 diabetes. The peroxidation of n-3 polyunsaturated fatty acids produces 4-hydroxy-2-hexenal (4-HHE), a lipid aldehyde with potent electrophilic properties able to interfere with many pathophysiological processes. The aim of the present study was to investigate the role of 4-HHE in the development of insulin resistance. METHODS: 4-HHE concentration was measured in plasma from humans and rats by GC-MS. Insulin resistance was estimated in healthy rats after administration of 4-HHE using hyperinsulinaemic-euglycaemic clamps. In muscle cells, glucose uptake was measured using 2-deoxy-D-glucose and signalling pathways were investigated by western blotting. Intracellular glutathione was measured using a fluorimetric assay kit and boosted using 1,2-dithiole-3-thione (D3T). RESULTS: Circulating levels of 4-HHE in type 2 diabetic humans and a rat model of diabetes (obese Zucker diabetic fatty rats), were twice those in their non-diabetic counterparts (33 vs 14 nmol/l, p < 0.001), and positively correlated with blood glucose levels. During hyperinsulinaemic-euglycaemic clamps in rats, acute intravenous injection of 4-HHE significantly altered whole-body insulin sensitivity and decreased glucose infusion rate (24.2 vs 9.9 mg kg-1 min-1, p < 0.001). In vitro, 4-HHE impaired insulin-stimulated glucose uptake and signalling (protein kinase B/Akt and IRS1) in L6 muscle cells. Insulin-induced glucose uptake was reduced from 186 to 141.9 pmol mg-1 min-1 (p < 0.05). 4-HHE induced carbonylation of cell proteins and reduced glutathione concentration from 6.3 to 4.5 nmol/mg protein. Increasing intracellular glutathione pools using D3T prevented 4-HHE-induced carbonyl stress and insulin resistance. CONCLUSIONS/INTERPRETATION: 4-HHE is produced in type 2 diabetic humans and Zucker diabetic fatty rats and blunts insulin action in skeletal muscle. 4-HHE therefore plays a causal role in the pathophysiology of type 2 diabetes and might constitute a potential therapeutic target to taper oxidative stress-induced insulin resistance.


Assuntos
Aldeídos/farmacologia , Resistência à Insulina/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Adulto , Animais , Glicemia/efeitos dos fármacos , Western Blotting , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos Ômega-3/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Insulina/sangue , Insulina/farmacologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Zucker , Tionas/farmacologia , Tiofenos/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-27514724

RESUMO

Docosahexaenoic acid (DHA) is a prominent nutrient of marine lipids. Together with eicosapentaenoic acid, it is recognized as a protective molecule against atherosclerosis and thrombosis through the regulation of blood cell functions, especially platelets. Its high unsaturation index may however make it prone to peroxidation, which is usually considered as deleterious. This short review takes into consideration this possibility related to DHA concentrations both in vitro and in vivo. It is suggested that protective effects of DHA on platelet activation depend on the reduction of oxidative stress, and appear bimodal with the abolishment of such a protection when DHA is used at relatively high concentrations.

16.
Lipids ; 52(9): 751-761, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28776175

RESUMO

Fatty acids have many health benefits in a great variety of diseases ranging from cardiovascular to cerebral diseases. For instance, docosahexaenoic acid (DHA), which is highly enriched in brain phospholipids, plays a major role in anti-inflammatory or neuroprotective pathways. Its effects are thought to be due, in part, to its conversion into derived mediators such as protectins. 1-Lyso,2-docosahexaenoyl-glycerophosphocholine (LysoPtdCho-DHA) is one of the physiological carrier of DHA to the brain. We previously synthesized a structured phosphatidylcholine to mimic 1-lyso,2-docosahexaenoyl-glycerophosphocholine, named AceDoPC® (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that is considered as a stabilized form of the physiological LysoPtdCho-DHA and that is neuroprotective in experimental ischemic stroke. Considering these, the current study aimed at enzymatically oxygenate DHA contained within AceDoPC® to synthesize a readily structured oxidized phospholipid containing protectin DX (PDX), thereafter named AceDoxyPC (1-acetyl,2-PDX-glycerophosphocholine). Identification of this product was performed using liquid chromatography/tandem mass spectrometry. Such molecule could be used as a bioactive mediator for therapy against neurodegenerative diseases and stroke.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Fosfatidilcolinas/química , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Docosa-Hexaenoicos/metabolismo , Lipoxigenase/metabolismo , Espectrometria de Massas , Fosfatidilcolinas/síntese química , Fosfatidilcolinas/metabolismo , Glycine max/enzimologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
J Neuroinflammation ; 14(1): 170, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28838312

RESUMO

BACKGROUND: Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain's resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain's n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1ß, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. RESULTS: In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. CONCLUSIONS: These results highlight the potency of administered DHA-acetylated to phospholipids-to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.


Assuntos
Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Fosfatidilcolinas/uso terapêutico , Animais , Linhagem Celular Transformada , Colina/farmacologia , Colina/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Fosfolipídeos/uso terapêutico
18.
Artigo em Inglês | MEDLINE | ID: mdl-27914512

RESUMO

Patients with cystic fibrosis have increased oxidative stress and impaired antioxidant systems. Moderate intake of docosahexaenoic acid (DHA) may favor the lowering of oxidative stress. In this randomized, double-blind, cross-over study, DHA or placebo capsules, were given daily to 10 patients, 5mg/kg for 2 weeks then 10mg/kg DHA for the next 2 weeks (or placebo). After 9 weeks of wash-out, patients took placebo or DHA capsules. Biomarkers of lipid peroxidation and vitamin E were measured at baseline, and after 2 and 4 weeks of treatment in each phase. The proportions of DHA increased both in plasma and platelet lipids after DHA supplementations. The lipid peroxidation markers did not significantly decrease, in spite of a trend, after the first and/or the second dose of DHA but plasma and platelet vitamin E amounts increased significantly after DHA supplementation. Our findings reinforce the antioxidant potential of moderate DHA intake in subjects displaying increased oxidative stress.


Assuntos
Plaquetas/metabolismo , Fibrose Cística/sangue , Ácidos Docosa-Hexaenoicos/administração & dosagem , Vitamina E/sangue , Adolescente , Adulto , Criança , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos/farmacologia , Método Duplo-Cego , Esquema de Medicação , Humanos , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo/genética , Adulto Jovem
19.
J Nutr Biochem ; 38: 1-11, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825512

RESUMO

Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Dieta Saudável , Ácidos Docosa-Hexaenoicos/uso terapêutico , Neuroproteção , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico
20.
Mol Biol Cell ; 27(21): 3293-3304, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582390

RESUMO

Dysregulated hepatic cholesterol homeostasis with free cholesterol accumulation in the liver is relevant to the pathogenesis of nonalcoholic steatohepatitis, contributing to the chronicity of liver toxicity. Here we examined the effect of free cholesterol accumulation on the morphology and biochemical properties of lipid droplets (LDs) in cultured hepatocytes. Acute free cholesterol accumulation induced the fusion of LDs, followed by degradation of the coat protein of LDs, perilipin 2 (PLIN2; also called adipophilin or adipose differentiation-related protein), and association of apolipoprotein B 100 (ApoB 100) to LDs. The degradation of PLIN2 was inhibited by inhibitors of ubiquitination, autophagy, and protein synthesis. The results indicate that association of ApoB 100 with LDs is dependent on the activity of low-molecular weight GTP-binding protein Rab18 and highlight the role of LDs as targets of free cholesterol toxicity in hepatocytes.


Assuntos
Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Apolipoproteína B-100/metabolismo , Apolipoproteína B-100/fisiologia , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Colesterol/fisiologia , Retículo Endoplasmático/patologia , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Perilipina-2/metabolismo , Fosfoproteínas/metabolismo , Proteínas rab de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...